A team of scientists from the School of Chemistry and the Manchester Interdisciplinary Biocentre (MIB) at The University of Manchester (U-M) have found a way of hijacking so-called 'riboswitches' and directing gene activity.
Working within cells of bacteria, chemical biologist and professor Jason Micklefield and his team have rewired these genetic switches so they are no longer activated by small naturally occurring molecules found in cells -- but through the addition of a synthetic molecule.
The work builds on the recent discovery that these naturally occurring molecules can turn genes on and off by triggering riboswitches found within a large molecule called messenger RNA.
When the researchers added synthetic molecules, they bound to the riboswitches and caused the genes to spark into life.
The team monitored how successfully they had re-wired the cells by observing the creation of a gene product that makes the cells glow green.
Neil Dixon, senior researcher in the team, said: 'Being able to selectively activate and regulate genes could have tremendous impact in drug discovery and the emerging field of synthetic biology,' said a university release.
The findings are reported in the latest edition of Proceedings of the National Academy of Sciences
No comments:
Post a Comment